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The Spatial Viscous Instability of a Two-Dimensional
Developing Mixing Layer

Taewon Seo*
(Received October 27, 1993)

This paper deals with the hydrodynamic instability of the free shear layer. The development
of mixing layers at downstream of a splitter plate is initially dominated by a linear instability
mechanism. The linear instability problem is an eigenvalue problem and solved by using the
shooting method with orthonormalization to maintain linear independence of the solutions.
Bi-directional integration with matching at the intermediate point within the infinite domain
was used to ensure the convergence and the accuracy in satisfying the boundary conditions at
== 00. It was found that when the Reynolds number increases, the amplification rate approaches
to that of the inviscid solutions.
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Nomenclature -----------

C1.2 : The complex coefficients at - 00

c : The phase speed
D1,2 : The complex coefficients at 00

p : Pressure
Jj : The large-scale structure of pressure
Jj : The eigenfunction of pressure
R : Velocity ratio
Re : Reynolds number
t : Time
U±oo : The free stream velocities
ii, iJ : Large-scale structtures
ii, [j : The eigenfunction of streamwise and

cross-streamwise velocities
a : Complex eigenvalue
/3 : Frequency parameter
o : Maximum slope thickness
u : Dynamic viscosity
p : Fluid density

1. Introduction

This paper is concerned with the hydrodynamic
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instability of the free shear layer. The develop­
ment of mixing layers downstream of a splitter
plate is initially dominated by a linear instability
mechanism. A great deal of work has been done
on this subject and for general review of the
hydrodynamic stability of parallel flows such as
the free shear layer the readers should consult by
Drazin and Reid( 1981). Gaster( 1962) clearly
showed that spatially developing disturbances
better represent the stabi lity characteristics of a
developing shear layer. Michalke( 1965) first cal­
culated the spatial stability of a parallel shear
layer. His results showed the amplification rates
for different frequencies for an inviscid shear
layer with the mean velocity profile approximated
by a hyperbolic tangent. Morris(l976) studied the
stability of three axisymmetric jet profiles which
represented the flow field of an incompressible
jet. Monkewitz and Huerre(l982) have studied
the theoretical dependence of spatially growing
waves on free-stream velocity ratio for the hyper­
bolic tangent profile. Seo(l993) first investigated
the eigenvalues and eigenfunctions of the stability
for unbounded viscous shear layer by solving the
eigenvalue problem with a shooting solution
matching method instead of one-directional inte­
gration method.



The Spatial Viscous Instability of a Two-Dimensional Developing Mixing Layer 15

The imaginary part of the wave number a( = ar

+ iaJ determines the stability of the flow; the
flow is stable if a, has positive value, neutral if ai
is equal to zero, and unstable if ai has negative

value. U, iJ and 15 are complex amplitude func­
tions.

If we use D it =-~~-and if we define the vari­

able vector V as

(6)

(3)

(4)r; --> ± co : U, iJ, 15 ---> O.

Assume that the solutions of Eq. (3) are

a15 aZiJ aZiJ
= -ar;+ 1./( Jxz+-ar;z-)'

The boundary conditions are

where c.c. is the complex conjugate. a represents

a complex wave number and c a phase speed. U,
v and ji are eigenfunctions to be calculated by

linear stability analysis.
When we substitute Eqs. (5) into (3), we get

iau +_dv_=O
dr;

ia( U - /3/ a)zi + ~~ iJ

. 15 I (d
z
U .2 ~)=-za +1?e ~-u u

i( U - /3/ a) iJ

= _JJ1..+_I_( dZii -clu).
dr; Re dr;z

( I)

We assume that the flow is perturbed and use
the tilde to indicate the perturbation. Use the

nondimensional parameters

2. Mathematical Formulation of the
Linear Stability Analysis

where 0 represents the maximum slope thickness.

Thus

u=U(r;)+u(x, r;, t)

v= iJ(x, r;, t)

p=P(x)+ 15(x, r;, t) (2)

where the mean velocity U( r;) = I - R tanh( 7])

with R (U=- U=)
(U=+ U=)

Hydrodynamic instability has been recognized
as one of the fundamental mechanism to under­

stand the transition from laminar to turbulent
flow. It is concerned with when and how laminar
flows break down, their subsequent development,

and their eventual transition to turbulence. It has
many applications in engineering, in meteorology

and oceanography, and in astrophysics.
Our interest in this study lies in obtaining

solutions for the viscous spatial two-dimensional
stability corresponding to the classical self-similar

velocity profile of the free shear layer. The infinite

domain combined the effects of the viscosity
makes the numerical solution of the viscous linear

stability problem quite challenging.

the velocity ratio of the shear layer.

If Eq. (2) is introduced into the Navier-Stokes

equations and linearized the equations by assum­

ing the fluctuations and their derivatives have

small amplitudes, we get

au + aiJ =0
ax ay

au + U au + au iJ
at ax ar;

___ a15 + (_!lit + azu)
-- ax 1./ axz a:;r:-

aiJ+uaiJ
at ax

then Eq. (6) become

ilV=MV
dr;

where M is 4 x 4 matrix as followed;

(7)

(8)
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3. Numerical Method for the Problem

(16)

(15)CC=o.

L1==del(C) =0.

4. Results and Discussion

The eigenvalue is determined if the determinant of
the matrix G is equal to zero;

This eigenvalue is calculated using the iterative

technique.
If the Reynolds number is higher, the indepen­

dent solutions lose their linear independence
because of contaminating error particularly in the
viscous region of the mixing layer. Therefore, the

eigenvalue and eigenfunctions obtained by the
superposition method are not accurate at all. An

orthonormalization method is used in order to
keep the independence of these sets of solutions.

The orthonormalization method was developed
by Conte(l966) and Davey(l973) and has been
successfully applied by Morris( 1976) in axisym­
metric jet and by Seo(l993) in a plane mixing
layer.

These asymptotic solutions are used as initial
conditions to solve the system of Eq. (8).

Equation (8) is integrated from - TJ to 0 and
from 17 to 0, and two computed results are mat­
ched at the matching point (in here matching

point is 0). It is found that this matching method

gives more accurate results than one-directional

integration method.
A Runge-Kutta-Fehlberg method is used to

solve the ordinary differential equations. This

scheme controls the step size by keeping the

estimate of the local error below the user specified
tolerance (in this study 10-08). The estimate of

local error is obtained by comparing the two
values evaluated by a fourth-order method and a

fifth-order method.
With correct eigenvalue, the computed solu­

tions at the matching point satisfy

CI V-I + Cz V- z= D I Vr + Dz liz· (14)

Rewriting the Eq. (14) in a matrix. form,

(9)

(II)

oo za -y
Re Re

where Y=«+iaRe(U~~).
a

16

0 0 0

y 0 Re dU iaRe
dTJ

-za 0 0 0

The system of ordinary differential Eq. (8)

together with the boundary conditions given by
Eq. (4) poses eigenvalue problem with as the

eigenvalue and ii(TJ), iJ(TJ) and p(TJ) as the
eigenfunctions that will be solved by a numerical

method.

In the numerical solution of the eigenvalue
problem on infinite intervals, a common method

of procedure is to replace the infinite interval,
( - 00, 00), by a finite one. The main problem

then is to determine the appropriate boundary
conditions to be imposed at a finite interval (say

TJ = ± 1700)'
To get the asymptotic solutions, the mean

velocity is constant at 17 = ± TJooo From Eq. (8), we
will get the asymptotic solutions.

As TJ -> - 00 the asymptotic solutions becomes

or

V-= C V-I + Cz V- 2

and at 17 -> 00 the asymptotic solutions are

or

(13)

where x=j«+iaRe(U±oo-/3/a), V±l is the
inviscid solution and V±z is the viscous solution.

The computed two-dimensional spatial amplifi­
cation rates for the hyperbolic tangent profile
with velocity ratio R =0.31 are plotted in Fig. I



The Spatial Viscous Instability of a Two-Dimensional Developing Mixing Layer 17

.3!f-..L........J::==:=-\J'""'" __'.. (dJ Y,

",.. \;, .

00 • -

I
', ,

-0.1

_O,2-------L........l~......l-~J
""--'-..,-~,---,-(lIp,

~ ",.~ .

"-,.,/ I

.0' L-.-L__~~j

-2 -, .) 1 ~ \

06 -T"""""~---r---r------'~

(.) u, ~ ::::~~."~;'~4r;.oOQ

,',, ,

olL------..L..----L...-~
Q 02 -..........,.-----r---,-------,-...............-" -- ".

lei·,

,

,

-02 ~L- I J I .........J......._
o. -,--~-------r-~.

Fig. 3 The eigenfunction near the most amplified
frequency ,Bmax=0.45 for Re= 1,000 and 0.35
for Re=50

plified. When ai becomes zero, the disturbance is
neither amplified nor damped and is neutrally
stable. From Fig. 1 we see that the neutral stabil­
ity point is moved to lower frequencies as the
Reynolds number is increased because of the
damping effect of viscosity. In Fig. 2 we have
calculated the critical Reynolds number to be
approximately 12.5. In region I the two-dimen­
sional disturbance is unstable and stable in region
II.

In Fig. 3 the eigenfunctions it, iJ and f5 for the
two-dimensional disturbance are shown near the
most amplified frequency for two Reynolds num­
bers 50, and 1,000. The trends in the amplified
region are consistent with those of the experi­
ments by Gaster, Kit and Wygnanski(l985) and
Weisbrot and Wygnanski(l988). In Fig. 4, we
show the Reynolds stresses induced by the large­
scale structures for Re = 1,000. The magnitudes of
the normal stresses decay slowly with distance
away from the center of the mixing layer. The
maxima of Reynolds stress occur around the
center of the shear layer and the trend of our
results shows good agreement with the experimen-
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Fig. 2 The neutral stability curve for two­
dimensional disturbance
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for various Reynolds numbers. The inviscid solu­
tion is also shown. The latter was obtained
numl~rically by integrating the second-order invis­
cid s.tability equation (Ragleigh equation) with
the appropriate choice of integration contour to
accommodate the singularity at U=c(Liu and
Nikitopoulos, 1987). The amplication rate in­
creases as the Reynolds number increases at fixed
frequency /3. When the Reynolds number is 1,000,
the amplification rates are almost equal to those
obtained by the inviscid analysis. For higher
frequencies beyond the neutral value, the shear
layer becomes stable and the disturbance are
damped. As long as the amplification rate - ai is
positive, the large-scale disturbances are am-

Fig. 1 Amplification rates - ai versus nondimen­

sional frequency for the case of two­
dimensional disturbance with several
Reynolds numbers
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ki(l965).

5. Conclusions

Fig. 4 The large-scale Reynolds stress for Re= 1,000
and P'max=0.45

tal observation by Weisbrot and Wygnans­
ki(l988). In the amplified frequency region the

Reynolds stress induced by the large-scale struc­
ture is positive. A positive Reynolds stress implies
that the energy of the mean flow will transfer to
the large-scale structure.

References

Conte, S. D., 1966, "The Numerical Solution of
Linear Boundary Value Problems," SIA M

Review 8, pp. 309-321.
Davey, A., 1973, "A Simple Numrical Method

for Solving Orr-Sommerfeld Problem," Quart. J.

Appl. Math., Vol. 26, pp. 401-441.

Drazin, P. G. and Reid, W. H., 1981, "Hyd­

rodynamic Stability," Cambridge University
Press.

Gaster, M., 1962, "A Note on the Relation

Between Temporally-Increasing and Spatially­

Increasing Disturbances in Hydrodynamic Stabil­
ity," J. Fluid Mech., Vol. 14, pp. 222-224.

Gaster, M., Kit, E. and Wygnanski, I., 1985,
"Large-scale Structures in a Forced Turbulent

Mixing Layer," J. Fluid Mech., Vol. 150, pp.23
-39.

Liu, J. T. C. and Nikitopoulos, D. E., 1987,
"Nonlinear Binary-Mode Interactions, in a Devel­

oping Mixing Layer," J. Fluid Mech., Vol. 179,

pp. 345 - 370.
Michalki, A., 1965, "On Spatially Growing

Disturbances in a Inviscid Shear Layer," J. Fluid

Mech., Vol. 23, pp. 521- 544.
Morris, P. J., 1976, "The Spatial Viscous Insta­

bility of Axisymmetric Jets," J. Fluid Mech., Vol.

77, pp. 511- 529.

Seo, Taewon., 1993, "Three-Dimensional
Large-Scale Coherent Structures in a Developing

Plane Mixing Layer,", Ph. D Thesis, University of
Louisiana State, USA.

Weisbrot, I. and Wygnanski, I., 1988, "On

Coherent Structures in a Highly Exicited Mixing
Layer," J. Fluid Mech., Vol. 195, pp. 137-159.

20\5

---

1.0

\

"

\

\

\

\

\

\
\

\

I

0.5

/

I
I

I

I

I

I
I

2
V

2

"

(Hi

02

114

-112 _J.. I I
-20 -1,5 -1,0 -0,:. 00

The eigenvalue and the eigenfunctions of a

spatially developing two-dimensional shear layer
was calculated using local linear stability theory.

It was found that bi-directional integration

method is more efficient and accurate than the
one-directional method. If the amplification rate

- Gi is positive, the flow is amplified. As the
Reynolds number increases, the amplification rate

approaches to that of the inviscid solutions. In
order to verify the used numenrical method, the

computed eigenvalues at high Reynolds number

have been successfully compared with those of the
inviscid numerical results done by Michal-


